Lecture 6:
Recall:
Discrete Fourier Transform:
Definition:
The 2D DFT of a $M \times N$ image $g=(g(k, l))_{k, l}$, where $0 \leqslant k \leqslant M-1$, $0 \leq \ell \leq N-1$ is defined as:

$$
\begin{aligned}
& -1 \text { is defined as: } \\
& \hat{g}(m, n)=\frac{1}{M N} \sum_{k=0}^{M-1} \sum_{l=0}^{N-1} g(k, l) e^{-j 2 \pi\left(\frac{k m}{M}+\frac{l n}{N}\right)} \\
& \quad\left(\text { where } j=\sqrt{-1}, e^{j \theta}=\cos \theta+j \sin \theta\right)
\end{aligned}
$$

Remark: The inverse of DFT is given by:

$$
\begin{gathered}
g(p, q)=\sum_{p=0}^{M-1} \sum_{n=0}^{N-1} \hat{g}(m, n) e^{\hat{N} T \text { of } g} \hat{p}^{j 2 \pi\left(\frac{p m}{M}+\frac{q n}{N}\right)} \\
\left(n \circ \frac{1}{M n}!\right) \quad\left(n_{0}-v e \text { sign }\right)
\end{gathered}
$$

DFT in Matrix form
Theorem: Consider a $N \times N$ image g, the $D F T$ of g can be written as: $\hat{g}=u g u$ (DFT in matrix form)
where $U=\left(U_{k l}\right)_{0 \leqslant k, l \leqslant N-1} \in M_{N * N}$ and $U_{k l l}=\frac{1}{N} e^{-j \frac{2 \pi k l}{N}}$.

Theorem: $U^{*} U=\frac{1}{N} I$ where $U^{*}=(\bar{U})^{\top}$ (conjugate transpose)

$$
\begin{aligned}
u u^{*}=\frac{1}{N} I . & (\overline{a+j b}=a-j b) \\
\therefore u^{-1}=(N u)^{*} & \left(\frac{e^{j \theta}}{}=\overline{\cos \theta+j \sin \theta}=\cos \theta-j \sin \theta\right. \\
& \left.=e^{-j \theta}\right)
\end{aligned}
$$

Image decomposition by DFT
Suppose $\hat{g}=\operatorname{DFT}(g)=u g u$
Then: $U U^{*}=\frac{1}{N} I=U^{*} U$

$$
\therefore \quad g=(N u)^{*} \hat{g}(N u)^{*}
$$

$\therefore g=\sum_{k=0}^{N-1} \sum_{l=0}^{N-1} \hat{g}_{k l} \vec{\omega}_{k} \vec{W}_{l}^{\top}$ Elementary image of DFT
where $\vec{\omega}_{k}=k^{\text {th }} \cot$ of $(N U)^{*}$

Remark:
Note that $U U^{*}=\frac{1}{N} I . \therefore U$ is not unitary.
If we normalize U to $\tilde{U}=\sqrt{N} U$. Then \tilde{U} is unitary!
Some other definition of $D F T$:
(ID) $\hat{f}(m)=\frac{1}{\sqrt{N}} \sum_{n=0}^{k-1} f(k) e^{-j\left(\frac{2 \pi m k}{N}\right)}$
(2D) $\hat{f}(m, n)=\frac{1}{N} \sum_{k=0}^{N-1} \sum_{l=0}^{N-1} f(k, l) e^{-j 2 \pi\left(\frac{m k+n l}{N}\right)}$
In this care, let $\tilde{u}=\left(\tilde{u}_{k l}\right)_{0 \leq k, l \leqslant N-1} ; \tilde{U}_{k l}=\frac{1}{\sqrt{N}} e^{-j \frac{2 \pi k l}{N}}$ Then:
Then, $\tilde{U}=\sqrt{N} U$

$$
\hat{f}=\tilde{u} f \tilde{u}
$$

\therefore Normalizing the definition of DFT \Rightarrow unitary \tilde{U} can be applied! BUT: Inverse DFT must be adjusted!!

Mathematics of JPEG (Optional)

Consider a $M \times N$ image f. Extend f to a $2 M \times 2 N$ image \tilde{f}, whose indices are taken from $[-M, M-1]$ and $[-N, N-1]$.
Define $f(k, l)$ for $-M \leq k \leq M-1$ and $-N \leq l \leq N-1$ such that

Make the extension as a reflection about $(0,0)$, the axis $k=0$ and the axis $l=0$. Done by shifting the image by $(1 / 2,1 / 2)$

After shifting

Now, we compute the DFT of (shifted) \tilde{f} :

$$
\begin{aligned}
F(m, n) & =\frac{1}{(2 M)(2 N)} \sum_{k=-M}^{M-1} \sum_{l=-N}^{N-1} f(k, l) e^{-j \frac{2 \pi}{2 M} m\left(k+\frac{1}{2}\right)} e^{-j \frac{2 \pi}{2 N} n\left(l+\frac{1}{2}\right)} \\
& =\frac{1}{4 M N} \sum_{k=-M}^{M-1} \sum_{l=-N}^{N-1} f(k, l) e^{-j\left(\frac{\pi}{M} m\left(k+\frac{1}{2}\right)+\frac{\pi}{N} n\left(l+\frac{1}{2}\right)\right)} \\
& =\frac{1}{4 M N}(\underbrace{\sum_{k=-M}^{-1} \sum_{l=-N}^{-1}}_{A_{1}}+\underbrace{\sum_{k=-M}^{-1} \sum_{l=0}^{N-1}}_{A_{2}}+\underbrace{\sum_{k=0}^{M-1} \sum_{l=-N}^{-1}}_{A_{3}}+\underbrace{\sum_{k=0}^{M-1} \sum_{l=0}^{N-1}}_{A_{4}}) \\
& f(k, l) e^{-j\left(\frac{\pi}{M} m\left(k+\frac{1}{2}\right)+\frac{\pi}{N} n\left(l+\frac{1}{2}\right)\right)}
\end{aligned}
$$

After some messy simplication, we can get:

$$
A_{1}+A_{2}+A_{3}+A_{4}=\frac{1}{M N} \sum_{k=0}^{M-1} \sum_{l=0}^{N-1} f(k, l) \cos \left[\frac{m \pi}{M}\left(k+\frac{1}{2}\right)\right] \cos \left[\frac{n \pi}{N}\left(l+\frac{1}{2}\right)\right]
$$

Definition: (Even symmetric discrete cosine transform [EDCT])
Let f be a $M \times N$ image, whose indices are taken as $0 \leq k \leq M-1$ and $0 \leq l \leq N-1$. The even symmetric discrete cosine transform (EDCT) of f is given by:

$$
\hat{f}_{e c}(m, n)=\frac{1}{M N} \sum_{k=0}^{M-1} \sum_{l=0}^{N-1} f(k, l) \cos \left[\frac{m \pi}{M}\left(k+\frac{1}{2}\right)\right] \cos \left[\frac{n \pi}{N}\left(l+\frac{1}{2}\right)\right]
$$

with $0 \leq m \leq M-1,0 \leq n \leq N-1$
Remark: Smart idea to get a decomposition consisting only of cosine function (by reflection and shifting!)

- Can be formulated in matrix form
- Again, it is a separable image transformation.
- The inverse of EDCT can be explicitly computed. More specifically, the inverse EDCT is defined as:

$$
f(k, l)=\sum_{m=0}^{M-1} \sum_{n=0}^{N-1} C(m) C(n) \hat{f}_{e c}(m, n) \cos \frac{\pi m(2 k+1)}{2 M} \cos \frac{\pi n(2 l+1)}{2 N} \quad(* *)
$$

where $C(0)=1, C(m)=C(n)=2$ for $m, n \neq 0 \quad$ Also involving cosine

- Formula ${ }^{(* *)}$ can be expressed as matrix multiplication: functions only!

$$
\begin{aligned}
& f=\sum_{m=0}^{M-1} \sum_{n=0}^{N-1} \hat{f}_{e c}(m, n){\overrightarrow{\vec{m}_{m}} \vec{T}_{n}^{T}}^{\text {elementary images }} \\
& \text { under EDCT! }
\end{aligned}
$$

where: $\vec{T}_{m}^{\prime}=\left(\begin{array}{c}T_{m}(0) \\ T_{m}(1) \\ \vdots \\ T_{m}(M-1)\end{array}\right), \vec{T}_{n}^{\prime \prime}=\left(\begin{array}{c}T_{n}^{\prime}(0) \\ T_{n}^{\prime}(1) \\ \vdots \\ T_{n}^{\prime}(N-1)\end{array}\right)$ with $T_{m}(k)=C(m) \cos \frac{\pi m(2 k+1)}{2 M}$ and $T_{n}^{\prime}(k)=C(n) \cos \frac{\pi n(2 k+1)}{2 N}$. does!!

Why is DFT useful in imaging:

1. DFT of convolution:

Recall: $g * \omega(n, m)=\sum_{n^{\prime}=0}^{N-1} \sum_{m^{\prime}=0}^{N-1} g\left(n-n^{\prime}, m-m^{\prime}\right) \omega\left(n^{\prime}, m^{\prime}\right)$

$$
\left(g, m \in M_{N \times M}(\mathbb{R})\right)
$$

Then, the DFT of $g * \omega=\operatorname{MNDFT}(g) \operatorname{DFT}(\omega)$
$\therefore D F T$ of convolution can be reduced to simple multiplication!

Proof:
Change of variables:

$$
\begin{aligned}
& \text { DFT of } g * \omega \text { at }(p, q) \\
& =\frac{1}{N M} \sum_{n=0}^{N-1} \sum_{m=0}^{M-1} g * \omega(n, m) e^{-j 2 \pi\left(\frac{p n}{N}+\frac{q m}{M}\right)} \\
& n \rightarrow n^{\prime \prime}=n-n^{\prime} \\
& m \rightarrow m^{\prime \prime}=m-m^{\prime} \\
& =\frac{1}{N M} \sum_{n^{\prime}=0}^{N-1} \sum_{m^{\prime}=0}^{M-1} \sum_{n=0}^{N-1} \sum_{m=0}^{M-1} g\left(n-n^{\prime}, m-m^{\prime}\right) \omega\left(n^{\prime}, m^{\prime}\right) / e^{-j 2 \pi\left(\frac{p n}{N}+\frac{q m}{M}\right)} \\
& =\underbrace{\frac{1}{N M} \sum_{n^{\prime}=0}^{N-1} \sum_{m^{\prime}=0}^{M-1} \omega\left(n^{\prime}, m^{\prime}\right) e^{-j 2 \pi\left(\frac{p n^{\prime}}{N}+\frac{q m^{\prime}}{M}\right)} \sum_{\sum_{n^{\prime \prime}=-n^{\prime}}^{N-1-n^{\prime}} \sum_{m^{\prime \prime}=--m^{\prime}}^{M-1-m^{\prime}}} g\left(n^{\prime \prime}, m^{\prime \prime}\right) e^{-j 2 \pi\left(\frac{p n^{\prime \prime}}{N}+\frac{q m^{\prime \prime}}{M}\right)}} \\
& \hat{\omega}(p, q)
\end{aligned}
$$

Note that: g and ω are periodically extended.

$$
\begin{aligned}
& \therefore g(n-N, m)=g(n, m) \text { and } g(n, m-M)=g(n, m) \\
& \therefore T \equiv \sum_{m^{\prime \prime}=-m^{\prime}}^{M-1-m^{\prime}} e^{-j 2 \pi \frac{q^{\prime \prime}}{M}} \sum_{n^{\prime \prime}=-n^{\prime}}^{-1} g\left(n^{\prime \prime}, m^{\prime \prime}\right) e^{-j 2 \pi \frac{p n^{\prime \prime}}{N}}+\sum_{m^{\prime \prime}=-m^{\prime}}^{M-1-m^{\prime}} e^{-j 2 \pi \frac{q m^{\prime \prime}}{M}} \sum_{n^{\prime \prime}=0}^{N-1-n^{\prime}} g\left(n^{\prime \prime}, m^{\prime \prime}\right) e^{-j 2 \pi\left(\frac{n^{\prime \prime}}{N}\right)}
\end{aligned}
$$

Consider $\sum_{n^{\prime \prime}=-n^{\prime}}^{-1} g\left(n^{\prime \prime}, m^{\prime \prime}\right) e^{-j 2 \pi \frac{p n^{\prime \prime}}{N}} \stackrel{n^{\prime \prime \prime}=N+n^{\prime \prime}}{=} \sum_{n^{\prime \prime \prime}=N-n^{\prime}}^{N-1} g \underbrace{\left(n^{\prime \prime \prime}-N, m^{\prime \prime}\right)} e^{-j 2 \pi\left(\frac{p n^{\prime \prime}}{N}\right)} e^{j^{2 \pi}{ }^{2 \pi} \mid}$
We can do similar thing for index $m^{\prime \prime}$.

$$
\begin{gathered}
\therefore T
\end{gathered}=\sum_{m^{\prime \prime}=0}^{M-1} \sum_{n^{\prime \prime}=0}^{N-1} g\left(n^{\prime \prime}, m^{\prime \prime}\right) e^{-j 2 \pi\left(\frac{p n^{\prime \prime}}{N}+\frac{q m^{\prime \prime}}{M}\right)=M N \hat{g}(p, q)} \begin{aligned}
& \therefore \quad \widehat{g * \omega}(p, q)=\operatorname{MN} \hat{g}(p, q) \hat{\omega}(p, q)
\end{aligned}
$$

Note:

$$
\begin{aligned}
& \text { (Spatial domain) } I * g \quad\left(\begin{array}{l}
\text { Linear filtering: } \\
\text { Linear combination of }
\end{array}\right. \\
& \text { neighborhood pixel } \\
& \text { values) } \\
& \text { (Frequency domain) MNI } \underset{\substack{\text { pixe(-wige } \\
\text { multiplication }}}{\odot} \hat{g} \text { by multiplication) }
\end{aligned}
$$

2. DFT of a shifted image

Let $g=\left(g\left(k^{\prime}, l^{\prime}\right)\right)$ be a $N \times N$ image, where the indices are taken as:

$$
-k_{0} \leqslant k^{\prime} \leqslant N-1-k_{0} \text { and }-l_{0} \leqslant l^{\prime} \leqslant N-1-l_{0}
$$

Let \tilde{g} be shifted image of g defined as:

$$
\tilde{g}(k, l)=g\left(k-k_{0}, l-l_{0}\right) \text { where } 0 \leq k \leq N-1
$$

$$
0 \leq l \leq N-1
$$

Then: $\hat{\tilde{g}}(m, n)=\frac{1}{N^{2}} \sum_{k=0}^{N-1} \sum_{l=0}^{N-1} g\left(k-k_{0}, l-l_{0}\right) e^{-j 2 \pi\left(\frac{k_{m}+l n}{N}\right)}$

$$
\begin{aligned}
& =\underbrace{\bar{N}^{2} \sum_{k=0} \underbrace{}_{k=0} g\left(k_{1}-k_{0}, l-l_{0}\right) e^{N} \sum_{k^{\prime}=-k_{0}}^{\sum_{l^{\prime}=-l_{0}}^{N-1-l_{0}}} g\left(k^{\prime}, l^{\prime}\right) e^{-j 2 \pi\left(\frac{k^{\prime} m+l^{\prime} n}{N}\right)}}_{\hat{g}(m, n)} e^{-j 2 \pi\left(\frac{k_{0} m+l_{0} n}{N}\right)}
\end{aligned}
$$

$$
\therefore \hat{\tilde{g}}(m, n)=\hat{g}(m, n) e^{-j 2 \pi\left(\frac{k_{0} m+l_{0} n}{N}\right)}
$$

